Uniqueness and nondegeneracy of sign-changing radial solutions of an almost critical problem

نویسندگان

  • Weiwei Ao
  • Juncheng Wei
  • Wei Yao
چکیده

∗Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2. Email: [email protected] †Department of Mathematics University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2. Email: [email protected] ‡Departamento de Ingenieŕıa Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile. Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness and nondegeneracy of sign-changing radial solutions to an almost critical elliptic problem

where 1 < p < N+2 N−2 , N ≥ 3. It is well-known that this equation has a unique positive radial solution. The existence of sign-changing radial solutions with exactly k nodes is also known. However the uniqueness of such solutions is open. In this paper, we show that such sign-changing radial solution is unique when p is close to N+2 N−2 . Moreover, those solutions are non-degenerate, i.e., the...

متن کامل

Nondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equations

We prove the non-degeneracy of the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u+ |u|p−1u = 0 in R constructed by Musso, Pacard and Wei [19].

متن کامل

Nondegeneracy of Nonradial Sign-changing Solutions to the Nonlinear Schrödinger Equation

We prove that the non-radial sign-changing solutions to the nonlinear Schrödinger equation ∆u− u + |u|p−1u = 0 in R , u ∈ H(R ) constructed by Musso, Pacard, and Wei [19] are non-degenerate. This provides the first example of a non-degenerate sign-changing solution to the above nonlinear Schrödinger equation with finite energy.

متن کامل

Uniqueness of Radial Solutions for the Fractional Laplacian

We prove general uniqueness results for radial solutions of linear and nonlinear equations involving the fractional Laplacian (−∆) with s ∈ (0, 1) for any space dimensions N > 1. By extending a monotonicity formula found by Cabré and Sire [9], we show that the linear equation (−∆)u+ V u = 0 in R has at most one radial and bounded solution vanishing at infinity, provided that the potential V is ...

متن کامل

MORSE INDEX AND UNIQUENESS FOR POSITIVE SOLUTIONS OF RADIAL p-LAPLACE EQUATIONS

We study the positive radial solutions of the Dirichlet problem ∆pu+f(u) = 0 in B, u > 0 in B, u = 0 on ∂B, where ∆pu = div(|∇u|p−2∇u), p > 1, is the p-Laplace operator, B is the unit ball in Rn centered at the origin and f is a C1 function. We are able to get results on the spectrum of the linearized operator in a suitable weighted space of radial functions and derive from this information on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015